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1. Introduction. We examine a scalar input-output system that models a bound- 
ary feedback scheme for the damping of torsional vibrations in a (not necessarily uni- 
form) cylindrical rod of circular cross section, consisting of a linear viscoelastic material. 
The open loop transfer function for the system is irrational, and we study the problem of 
approximating some ideal compensator by a proper rational one. The approach is in the 
spirit of [12], where bending vibrations in an Euler-Bernoulli beam with Kelvin-Voigt 
damping were studied (and where a discussion of potential applications of the method 
is found). In particular, a compensator derived from the full distributed parameter 
model is approximated. The general method is designed to deal with a wide range of 
viscoelastic materials and structures. Here we treat the full range of linear visco'elastir 
constitutive relations, but we examine only one structure, namely, the case of torsional 
vibrations (i.e. the viscoelastic wave equation) with actuator and sensor collocated <\t 
one end of the rod. An analogous study for bending motion in beams will follow in a 
separate paper [10]; for non-collocated sensor and actuator, new issues arise that will 
not be addressed here, see [12]. We remark that in addition to the work in [12], the 
problem of robust controller design for an Euler-Bernoulli beam with strong damping, 
namely Kelvin-Voigt damping, has been considered in several papers; in particular, wc 
cite [11], [3] and [4]. 

In the particular (collocated) cases that we discuss, the open-loop transfer functions 
P(s) have no zeros or poles in the open right half-plane, and no zeros or poles on the 
imaginary axis apart from a pole at zero and a (fractional order) zero at infinity. The 
transfer function of a typical "optimal" compensator will be some rational function 
divided by P(s); since the latter function is irrational, the compensator obtained in 
this way will be irrational too. In order to get a compensator that can be physically 
implemented, one has to approximate P(s) by a rational function, preferably of low- 
degree. 

As a model problem illustrating the type of approximation we will make, consider 
the equation 

wtt(x,t) + 2awt(x,t) + a2w(x,t) = wxx(x,t) 
( ' (0<-T< l,0<i<oo,G>0) 

with boundary and initial conditions 

iux(0,t) — 0,tt>j.(l,t) = u{t) = input, w(x,0) = UI((:E,0) = 0 

and output w(l,t). This is a wave equation with dispersion and viscous damping, and 
it is not formally covered by our results, but it is quite similar in nature. Solution of 
the system for the Laplace transform 

TOO 

w(x, s) = /    e~''w(x,t)dt 
Jo JO 

leads to the formula w(l, s) = P(s)u(s), where the transfer function is 

cosh(s + a)       _       1   " l + (s + af/d 
(2) P(s) + «)25l- (s + a) sinh(s + a)     {s + af ^ 1 + (s + a)2/'?I 



with &. = (2fc - 1)TT/2, T}k = kw. We attempt to approximate P with a finite product 

<3) PffW=r(rM5I1
1i+(-+«)v»Ä- 

As we shall see in Section 2, this approximation should be done in such a way that, 
e.g., (P(s)/Pn{s) - l)f(s) tends to zero uniformly in the right half-plane; the function 
f is a certain weight function (a design parameter) that has a zero at infinity. 

In a uniform or nonuniform viscoelastic rod model one gets a similar transfer func- 

tion. The main difference is that the factor (s + a) is replaced by a (possibly) transcen- 
dental function ß(s) which reflects the viscoelastic memory kernel for the material. 

The geometry of the problem remains the same for all different functions /?(«), so 
the same partial product scheme is used for all materials. We prove convergence of these 
partial products in regions of the /?-plane that include the range of ß(s). The detailed 
mechanical properties of the viscoelastic material enter solely through ß(s) and will 
influence the number of factors needed for the desired degree of accuracy in the partial 
product. 

The product expansion that we use is, in principle, well-known. The functions 
that need to be approximated have alternating zeros and poles on straight lines in tin: 
complex plane. In particular, in the case of the rod these zeros and poles lie on the 
imaginary axis. According to the Herrnite-Biehler theorem, functions of this type can 
be represented as infinite products of linear fractional transformations. However, the 
Herrnite-Biehler theorem itself does not give a bound on the behavior of the error terms 
at infinity, and a substantial part of this work is devoted to the development of a precise 
description of the asymptotic error at infinity (Section 4). In particular, we show that 
one gets a better approximation at infinity if instead of simply truncating the infinite 
product expansion, we also multiply the truncated product by an additional irrational 
factor (sec the discussion preceding equation (31) in Section 4). 

To complete the construction of a rational approximation of P for models where 
ß2 is irrational we have to approximate linear fractional transformations of ß-(s) In- 
linear fractional transformations of s. In Section 5 we suggest a very simple, low order 
approximation which in many cases leads to satisfactory results. The idea behind this 
approximation is to separate the dynamic modes from the creep modes, and to ignore 
the latter type of modes. This seems to work quite well when the internal structural 

damping is'small. 
Finally, in Section 6 we discuss the extra irrational convergence factor that was 

introduced in Section 4, formula (31). In particular, we show with asymptotic estimates 
and numerical experiments that we get reasonably good results by simply ignoring the 
extra factor completely, provided that the design parameters S and T are properly 
chosen. 

The authors thank Professor Joseph A. Ball for several helpful discussions. 



2. Weighted Rational Approximations of the Optimal Compensator. As 
we shall see in Section 3, the transfer functions that we deal with here can be expressed 
as the quotient of two outer üf°°-functions. More precisely, for the type of rod problem 
treated here, they are continuous and have no zeros or poles in the closed right half- 
plane, except for a zero at infinity (not of integer order, in general) and a pole of 
order two at zero. (In the essentially identically situation where the left end of the 
rod is fixed rather than free, the transfer function is regular at zero.) In particular, 
this means that by the appropriate choice of compensator, one can achieve almost any 
sensitivity function S = (1 + PC)~l. The only constraints that have to be imposed on 
S are some growth conditions at infinity, and possibly at zero. 

Within this class of feasible sensitivity functions S, one would like to find an optimal 
one. There are several different methods available, including mixed sensitivity H^- 
optimization and /^-optimization with H°° constraints. It may happen, as in [IS], 
that S itself is already a suboptimal approximation of an ideal sensitivity function 
that fails to satisfy the stability conditions (4) below. Here we shall not go into this 
optimization procedure. Instead we assume that one has found, in one way or another, 
a sensitivity function S that one would like the closed loop system to have. 

As we mentioned above, not every S is permissible, because the open loop transfer 
function P has a zero at infinity, and possibly a pole at zero. This can be seen in many 
ways, one of which is the following. The closed-loop system is always required to be 
stable, i.e., the four closed-loop transfer functions 

1=       l 
1 + PC' 

PC 

1 + PC 
c 

T=l-S=PCS= 

PS = 

1 + PC' 
p 

1 + PC 

should all belong to H°°, and their i/°°-norms should not exceed certain numbers that 
can be given a priori. (These numbers depend on the sizes of the sensor and actuator 
noises, etc.) In particular, we have 

(4) IICSIU«, < Kc,       ||P5|U- < Kp, 

for some constants Kc and Kp. For our scalar system the former of these conditions is 
equivalent to 

(5) \l-S(s)\ = \f(s)\<Kc\P(s)l 

and the latter is equivalent to 

(6) \S(s)\ < KP\P(S)\-\ 

5 



Note that (5) gives 

(7) S(s) = 1 + 0(\P{s)\) as * - oo, 

which combined with (4) implies 

\imsup\C(s)\<Kc, 
8—»OO 

that is, C has to be proper. The restriction (6) comes into play mainly in those cases 
where P has a pole at zero, since it implies that 

(8) §(s) = OQPis)]-1) as s -> 0. 

The conditions (4) imply stability. To see this, observe that 

ST = {CS)(PS); 

hence, for each s, 

and 

|I(,)|(|S(S)| - 1) < KcKp, 

\§{s)\< 1/2 +^1/4 +KcKp. 

A similar estimate holds for |T(s)|. 
In the sequel we assume that the "optimal" sensitivity function § that we would 

like to implement is feasible in the sense that it satisfies (4). 
Once a sensitivity function § is given, one may compute the corresponding optimal 

compensator from the formula 

g_l-g_   f 
SP       SP" 

There is only one thing wrong with this C\ in general it will not be rational, due to the 
fact that P is not rational, and it cannot be implemented exactly by means of Standard 
circuits. This leads to the main point of this paper. Suppose that we have a given S 
satisfying (4). How can we find a rational compensator Cn such that the sensitivity 
function 5# corresponding to this compensator will be reasonably close to the ideal one 
5, and will satisfy the analogue of (4), namely, 

(9) \\CNSN\\„~ < Kc,       \\P§N\\n- < KP, 

as well? We shall assume that the optimal § (hence the optimal T) is rational. Thus, 
it is really a question of approximating P by a rational function P#, and setting Cn = 
f/(SPN). 



There are several ways that one may interpret the words "reasonably close" in 
the preceding paragraph, and to each different way corresponds a different measure of 
how good the approximation is. Perhaps one of the most natural measurements of the 
goodness of an approximating compensator Cjv is the smallness of either the #2-norni 
or the #°°-norm of §N — §. These norms can be written in the form 

||SV — S\\IIP ■■ 
1 1 

\I + CNP   i + cp\\m 

v    i)     1        5P 

■TN      )(1 + CNP){1 + CP) 

where p = 2 or p = oo, and 

rN = CN/C = P/PN. 

If we ignore higher order terms, then this becomes ||(TJV - l)ST\\u,. Thus, in this case 
the problem could be interpreted as finding, for each N, a controller CA; of order Ar. 
say, that minimizes 

\\SN-S\\„,*\\(TN-l)Sf\\i[p. 

In other words, we get a weighted approximation problem, where the weight is ST. 
Because of (7), this weight function will have a zero at infinity, and, if P has a pole at 
zero, then, because of (8), it will also have a zero at zero. 

In the discussion above we have ignored all higher order terms and the stability 
bounds (9). When these are taken into account one gets some additional constraints. 
The exact expression for S# — S is 

§N - S = (1 - Tf,)TSff, 

where SN can be written in the form 

(10) §N = TT^hw 
Thus, we have the more precise estimate (for p = 2 or p = oo) 

11//« \\SN - S\\„. < \\(TN - l)§f \\iip 1(1 + (rN - l)f)" 

To make this norm small it suffices to minimize the Hp-nona of (TN - 1)ST subject to 
the constraint that for some constant a < 1, 

(11) [fa ~ l)r||tf„ < * < I- 

This is the same problem as before, except for the additional constraint (11). Of course, 
one could also use the fact that 

, \\(rN-l)Sf\\Hr<\\(rN-l)f\\Js\\n„, 



and minimize the üf-norm of (TN - 1)T instead of the Hp-norta of (rA- - 1)5? since 
the H°°-noTm of S is finite. 

Let us still take a closer look at the stability bounds (9). Because of (4), (10) and 
(11), we have 

\\cNsN\\   <|kas||„Jri + ^-i^r1 
117/°° — II 11/7« 

Kc ^l-ar'^CSl^^lMI,,. 

and 

\\PS4„^\\PS\L (i+^-ijf)-1! <Jb-. K '    In»     1 - a 

Thus, our problem becomes the one of minimizing the iV-norm of either (r.\- - 1 )ST 
or (TH — 1)7' subject to the constraint (11), combined with cither 

(12) |M|W. < ß 

oi- 

where ß > 1 is some constant. Note that (12) can be much more conservative than (13) 
due to the fact that whenever the function CS has a zero at infinity it is possible to 
allow TJV to be quite large or even infinite at infinity; this is true whenever C is strictly 
proper. 

If one chooses some other criterion for goodness of the approximation, then one 
gets some other weighted approximation problem, either in H2 or in H°°, with addi- 
tional UP5 constraints. See, e.g., [1]. These weights will always have a zero at infinity, 
and sometimes a zero at zero, and //""-constraints of the type (11) and (13) are al- 
ways present, either explicitly or implicitly, since they are intimately connected to the 
stability of the feedback system. 

The method that we propose will not be optimal with respect to any of these 
minimization problems; indeed, the approximate plant PH will not be characterized as 
a minimizer. The method will, however, give fairly good results with respect to all 
measures of closeness of the type described. Specifically, we shall construct, rational 
approximates PN (of orders that will increase linearly in N) in such a way that 

• TN = CN/C — P/PN —* 1 uniformly on compact subsets of the right half-plane. 
and 

• limsupw^TO||rwC\S||//~ < co. 
It is easy to show that, for the plants that we consider, and for any compensator 

C satisfying the stability bounds (4), we will then have \\(TN — 1)ST\\UP —> 0 and 
||(TJV - l)?||tfp -* 0 for p = 2 and p = oo (note that C(s)S(s) ~ C[s) and f (,*) ~ 
C(s)P(s) as \s\ —> oo). In particular, (11) will be satisfied for large values of Ar with 

8 



arbitrarily small a, and (13) will hold. Of course, our compensators will not have t.ho 
lowest possible order corresponding to a given accuracy, but the order may be further 
reduced by means of some standard order reduction scheme. 

As we shall see, we will not quite achieve the goal set forth. First, if ß7{s) is not. 
rational, our method of constructing PN (Section 5) leaves a residual error due to some 
continuous creep modes (singularities other than poles on the negative real axis) that 
we ignore. Although this residual error does not tend to zero as N -> oo, it will be 
quite small in the case where the material is "nearly" elastic. 

Second, our best approximations involve multiplication of the basic partial product 
by a new factor, irrational in ß2 and unbounded as s -+ co. In Section 6 we analyze the 
effect of dropping or simplifying this factor; the same type of convergence (A' -* oc) 
holds, but the convergence rates are weakened. A detailed investigation of low order 
rational approximates for this factor remains to be done. 

At each stage of the approximation, we introduce a new relative error, rff in Section 
4, TJ^ in Section 5 and T$ in Section 6, and each of these sections will close with some 
plots of Irfe'fiw) - 11 for some model kernels. The cumulative relative error resulting 

(1)   (2)   (3) from, making all the approximations is then r# = TK
N'rN TN . 

We now proceed to give a detailed description of our method. 



3. The Physical Models and their Transfer Functions. We study toisional 
vibrations in a cylindrical rod of circular cross section consisting of a viscoelastic mate- 
rial, for which one modifies the usual equations of motion from linear elasticity theory 
by permitting the stress at any point to depend on the history of the strain rate at. that 
point. The memory dependence is governed by a relaxation function A(1) = E + «(/). 
where E > 0 and a(t) is completely monotonic with 0 = a(co) < a(0+) < oo and 

I eSta(t) dt < oo for some S > 0. 
o 

As an extreme case we also include a(t) = aS(t) where a is a positive constant and 
S(t) is the delta function (Kelvin-Voigt damping). Note that the case of pure elasticity. 
a(t) = 0, is excluded. 

Reasoning as in [9], we arrive at the equation 

(14) p(x)w,(x,t) = f A(t- r)wxx(x,r)dr       (0 < x < 1, t> 0). 
Jo 

Here (after scaling) w(x,t) represents the torsion at position x along the rod at time t. 
The density function p(x) is assumed to be smooth (C3) and strictly positive in [0.1], 
We assume that the rod is at rest for t < 0 and that its left end is stress-free. At the 
right end we give a stress input u(t) via an applied torque and measure w(l,t) as au 
output. Thus, 

w(a:,0) = 0       (0<x<l), 

(15) <7(0,<) = ^'/l(t-rK(0,r)dr = 0    (t > 0), 

u(l,t) = — ['A{t - r)wx(l,r)dr = u(t)    (t > 0). 
dt Jo 

We shall be working in the frequency domain; in other words, we study the Laplace 
transforms of the quantities of interest, denoted by a{s), w{x,s), etc. We introduce 

a(s) = (sA(s))1'2 = (E + sa(s))1'2    (« € C \ (-co, -So]), 

ß(s) = s/a(s). 

Here and below z1?2 is defined so that zxl2 > 0 when z > 0; <5o is the largest number 
such that 6o < 6 and sA(s) > 0 on (-60,0). After applying the Laplace'transform to 
equations (14)—(15), we get 

a2(s)wxz(x, s) - s2p(x)w(x, s) = 0    (0 < x < 1) 

(IS) a?(s)wx(0,s) = 0    (free end condition) 
a2(s)wx(l,s) = u(s) = boundary stress input. 

When p(x) = 1 the differential equation and the first boundary condition in (1C) 
have the general solution 

w(x,s) = c(s) coshßx with ß = ß(s), 
10 



so we get that w(l,s) = P(s)u(s), where the transfer function P is given by 

(17) P(s) = %jj±f (ß(s)) = ^ coth ß(s). 

Notice that /(/?) has the product expansion 

/(/j)=coth^--nrTW^, 

with zeros and poles, respectively, at the points 

ß = ±&i = ±(2fc~1)?ri, and ß = % = 0, /? = ±%i = ifcfri (fc = 1,2,...). 

For the case of general densities below, we have 
PROPOSITION 3.1.  The transfer function for the rod problem has the form 

(18) P(*) = ^/W«)), 

where f(ß) has the factorization 

Here 0 = Jjo < 6 < % < 6 < >?2 • • • w«f» 

(19) fa = (2fc " 1)T + Q(l/fc) °"rf ite = — + 0(l/fc)        (fc-oo), 
2/?i Pi 

mid pi = Jo p(a-)I/,2dx. 
Proof. Fix s (and hence /? = ß(s)) and let 2/(:r,2) be the solution of 

(20) y" + z2p(x)y = 0, j/(0) = 1, 2/(0) = 0. 

As in the uniform case, we can then compute 

_,     .     ß2y(l,iß)„, , 

= P(S)2(5). 

To develop the product expansion claimed for /(/?) = ßy(l, i^/j/fl, i/3), we apply [13, 
Thm. 1, p. 308, and Thm. 4, p. 315] to the function 

g(z) = zy(l,z)/y'(l,z). 

We establish that 

11 



(i) 2/(1,2) and y'(l,z)/z2 are entire and 

(21) Hm</(M)/22 = -j%(.r)d.r 

(ii) 2/(1,2) and y'(l,z)/z have no common zeros, 
(iii) if m and n are real and z is nonreal, then my(l,z) + rci/(l, z)jz ■£ 0, 

and 
(iv) g(z) is increasing on the real axis (on the intervals between its poles). 

Once (i)-(iv) are proved, the results from [13] yield the expansion 

z    fcsZ\{o} v1    z/u^ 

where c > 0 and (with 60 = 0), bk < ak < bk+i for every integer k. Since j/(l,0) = 1. 
relation (21) then shows that a0c = l//o p(i) dx. 

From (20) it is clear that, aside from 60. the ak's and bk's occur in positive-negative 
pairs ±£k, ±r/k, so the desired product expansion for f(ß) follows. Finally, the asymp- 
totic distribution of the &. and rjk follows from Sturm-Liouville theory [2, p. 328], [5, p. 
414]. 

Assertions (i) and (ii) follow from the elementary theory of differential equation*. 
In particular, for the analyticity of i/(l, z)/z2 at 0 and (21), differentiate (20) with 
respect to z to get 

y"z{x, z) + z2p(x)yz(x, z) = -2zy(x, 2),    y:(0, z) = yz(0, 2) = 0. 

(We denote dy/dx by j/, dy/dz by y2, etc.; all the derivatives that will appear air 
continuous in (x,z).) Letting z —> 0, we get that j/^n'.O) = 0, 0 < x < 1. so 
lim._o j/(l,2)/2 = J/z(l.°) = 0- Differentiating again in 2, we get 

y"zz{x, 2) + z2p{x)yl:{x, z) = -4zp{x)y^x, 2) - 2p(x)ij{x,z), 

y„(0,z) = »'„(01*) = 0. 

Since y(x, 0) = 1, we can let 2 —* 0 to obtain ijzz{x, 0) = —2p(x), so 

lim j/'(l, 2)/22 = 1^(1,0) = -£p(x)dx, 

as asserted. 
Assertion (iv) follows from Sturm-Liouville theory. From [2, p. 312, (22)], with 

Ö(2) = arctan(2/(l,2)/j/(l,2)), 

— = p(l) sin2 6 + cos2 0 > 0, 2 e R, 
d2 

so 3(2) is a product of two increasing functions between the zeros of t/(l, z) on R. 
12 



Finally, for assertion (iii), suppose there is a z e C\R such that zy(l,z)/y'{l,z) = 
r e R\ {0}. (By standard boundary value theory y(l,z) = 0 and i/(l,z) = 0 are 
impossible.) Multiply (20) by y and integrate by parts to get 

(22) 0 = z2 fü p(x)\y(x)\2 dx - jf' \y'(x)\2 dx - Jz/(1)|2. 

Now set z - p + iv and separate (22) into real and imaginary parts: 

0 = (M
2 - v2) jf1 P(x)\y(x)\2 dx - fa \i/{x)\2 dx - ^\y{ltf 

Q = 2pvj\{x)\y{xfdx~\y{\)\2. 

Since u ^ 0, we can cancel v in the second equation and substitute for \y(l)\2/r in the 
first to obtain 

0 = -(p2 + v2) I' p(x)\y(x)\2 dx - f \y'{x)\2 Ax, 
Jo JO 

which is impossible.  D 
We remark that the asymptotic error 0(fc_1) in formula (19) cannot be improved 

in general [15, Section 4.3]. 
Next, recall from the Introduction that we propose to approximate P(s) = 

s-
2ß(s)f(ß{s)) by rational functions in two steps, where in the first step wc approxi- 

mate ßf(ß) by a rational function of ß. The domain of s that is of concern is the right 
half-plane äfo > 0. Thus, we need a rational approximation of / that is valid in the 
image of the right half-plane under ß, i.e., the domain of our approximation is 

n = {/?(s)|3is>0}. 

We complete this Section by describing this set. 
The set II depends heavily on the size of the function .4 and its derivative in the 

neighborhood of zero. 
LEMMA 3.2.  Under the hypotheses of this section, 

1. (a)ß(0) = 0, 
(b) Uß(s) >0for 9?s > 0, s j: 0,    . 
(c) ß(s) = ß(s), 
(d) S/?(iw) -+ oo as UJ -> co, 
(e) 9/?(iw) > R/?(iw) for u> > 0, 
(f) { arg(s) < TT/4 } C n = { ß{s) \ Sfo > 0, s ? 0 } C { arg(s) < vr/2 }.. 
(g) \immfs-.co\s\-1/2\ß{s)\ > 0 uniformly in 9fcs > 0, 
(h) ß{s) ~ sA(0+)~1/2 if A(0+) < oo and ß(s) = o{s) if .4(0+) = co as 

s —► oo uniformly in 5Rs > 0. 
2. IfA{0+) < oo, then%tß(~w) = o(S/?(iu>)) asw -> oo. Thus, U is not contained 

in any sector of the form { arg(s) < ir/2 - € } for any e > 0. In addition, 

(23) %ß(M 
A(0+)i 
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and 3tß(iu>) satisfies the regularity condition 

(24) 
lim   inf   <n},.  .' > c2 for each c e (0,1) 

o.-.ooc<r<l   »^(lw) V   '    ' 

. &/?(irw 
lim inf-   „..   , 

w~°°l<r   R/?(lO)) 
> 1. 

3. If A'(0+) > -oo (hence A(0+) < <x>), then %ß(iu) - w.4(0+)-1/'- -> 0 
and &ß{iw) -» _|^'(0+)^(0+jr3'2 as w -> oo. //.4'(0+) = -oo. t/i<m 
Q/?(iu) —+ oo and JJ/5(iw) —» oo as u —» oo.   /n particular, in all cases. 
liminL_;oo»^(iw)>0. 

Proof. 1. We have 

(25) ß\s) = a2(s)     E + sa(s)' 

where [9, (2.14)] fta(s) > 0 ($s > 0, s ^ 0), Ssöa(s) < 0 (31s > 0, Öä ^ 0), and 
ß 6 L^R"1"). Then (la) is obvious, and a short calculation shows that Ösö/?'-(.s) > 0 
(Q's ^ 0) so that |arg/?2(iw)| < ir, from which we see that ß(s) = (s2/a2y'0-, so (lb) and 
(lc) are clear. For s = iw, w > 0, (25) can be resolved into real and imaginary parts. 
showing that ß\iu) lies in the second quadrant, so (le) follows. The fact that ß(s) —* oc 
as s —» oo (Sfts > 0) together with (le) imply (Id). Assertion (If) is a consequence of 
(lb), together with (la), ß(s) -> oo as s -» oo, (lc), (le) and the argument principle. 
Finally, (lh) follows from (25) and [9, (2.18)], and (lg) is a consequence of (25) and the 
fact that |o(*)| < 5(0) for fUs > 0. 

2. We have 

(26) A{\u) -4—l + —A'(ICJ), 
1W 10) 

wX(iw) = -iA(Q+) + o(l)    (w -> oo) 

oo), and the first half of Using this and (25), we get that 7r > arg/J2(iu>) 
Part 2 follows. 

To prove the regularity condition (24), we recall that the completely monotonic 
function — A'(t) has a Bernstein representation [17, p. 160] 

-A\t) = J°° e-1'du(x)       (f>0), 

where v is a positive measure, and 

-f,.   .       /•0Oa;di/(i) 
-,4'(iw) = /    - 

From (25) and (26) we get 

! + u>2 Jo 

du(x) 
x2 + u>2 (w G R). 

0(iw) = 
A(0+)i 

1 + 
A'(iu)' ' 

M0+). 
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and then the Taylor's expansion for (1 + z) 1/2 yields 

u w2        f*5 Avlx) 

Thus, (23) holds, and (24) easily follows since a>2(z2 + w2)-1 is increasing in w and 
{aJf (x2 + (cw)2)-1 > cV(x2 + w2)-1 when c e (0,1). 

3. This was proved in [9, Lemmas 2.2 and 2.3]. D 
For particular examples one can very precisely describe the region II. Wc shall 

examine closely the following model kernels (in decreasing order of structural damping): 
1. Ai(s) = E/s + e; Kelvin-Voigt damping, where formally Ai is the suni of a 

constant and a constant times the unit point mass at zero. 
2. A2(t) =E + (e6"/r(n))f-'e"", A2(s) = E/s + «(1 + s/S)~"; 0<ß<l,ej> 

0,r = gamma function; a modified "fractional derivative" model (sec [16]) of 
order \ — \i with exponential decay as 1 —> oo. 

3. A3(t) = £ + (eS"+1/r(ß + 1)) JT i^-1e-'T AT, 

Ä3(s) = E/s+(eS/(ßs)) (1 - (1 + s/Sy); an intermediate model of order 1-/« 
with .4(0+) < oo and A'(0+) = -oo. 

4. Ai{t) =E + £Se~6t, A4(s) = E/s + e/ (1 + s/S); standard linear solid model. 
Observe that the constants have been chosen in such a way that in all cases .4(.s) - 
E/s - e —> 0 as s -+ 0, so that the different examples have the same low frequency 
behavior. The constant p is related to the behavior of A near zero, and 6 represents 
a bandwidth constant (the transfer functions do not differ much from each other for 
\s\«S). 

For the kernels listed above, we can use the binomial series to deduce the following 
precise estimates valid for large values of |s| in 5Rs > 0. The proofs are straightforward 
and are left to the reader. 

LEMMA 3.3.  The following estimates are valid: 
1. If A = Au then ß(s) = e'^s1'2 + 0(\s\~1'2) as \s\ - oo, Sis > 0. 
2. If A = A2, then ß(s) = S'"'^1/^1^'2 + 0(|s|(3,.-i)/2) as |s| _ oo, 8?s > 0. 
3. If Ä = Ä3, then ß{s) = (E + eS/ßY^s + \e6^ß-\E + rf//«)-3/V-" + 

Od«!1-2") as \s\ -> oo, SRs > 0. 
I If A = 1„, then ß{s) = (E + eSyh + leS^E + eSy^ + Ods]-') as |.s| -» oc. 

Rs>0. 
The estimates in Lemma 3.3 allow one to describe the asymptotic behavior (u> -» oo) 

of the curves /?(±iu>). In the following paragraph, C denotes a positive constant that 
depends on the model as well as the values of the parameters ß, E, e, 6. We leave it to 
the interested reader to determine the value of C in each case. All estimates are valid 
as i>3 —> oo. 

We have /?(-kv) = /3(iw). For ^i, ß(\u) ~ r'/V^w"2, and for A2, ß{w) ~ 
Ce(i+/')T'/4w(i+^)/2^ Hence, for the Kelvin-Voigt model and for fractional derivative 
models, II is contained in a proper subsector of the right half-plane. For A$, Q/?(iu) ~ 
C (3J/?(io>))I/(1_''). In particular, for A3, $tß(iu) -» oo as w -» oo, but II is not contained 
in any .proper subsector of the right half-plane. Finally, for the standard linear solid 
model Ai, 3/?(iw) ~ (E + eö)~l'2w and »/?(iw) -* ±e62(E + eS)'3'2. 
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FlG. 1. Plots of dtß(iu)) (abscissa, left) versus Imß(iu) JorO < w and of'u (abscissa, right.) versus 

Plots of the functions /?(iu>) and P(iw) for the different choices A1-A4 for the kernel 
A are given in Figure 1. (In these plots, and in all later plots, the parameters have been 
chosen as follows: E = 1, e = 0.01, 6 = 20, and ß = 0.5.) Note that stronger viscoelastic 
damping corresponds to a ß curve bending more sharply to the right. The same curve 
style (solid line = A\, dotted line = Ai, etc.) is used in both graphs, as well as in later 
graphs of the same type. 
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4. Rational Approximation of the Plant; First Step. Next we discuss the 
approximation of the plant in terms of a rational function of /32, and we begin with the 
case of the rod with density p(x) = 1. As we saw in Section 3 formula (17), in this case 
the transfer function is 

P(S) = ^coth/?(s). 

If, for the moment, we ignore the factor ß(s)s~2, then we are left with the problem of 
getting an approximation of 

f(ß(s)) = cothß(s). 

As we mentioned earlier, we intend to do this approximation in two steps. First we 
approximate /(/5(s)) in terms of a rational function of ß(s), and then we approximate 
this by a rational function of s. 

In the first step, by the argument that we gave earlier, we need a rational approxi- 
mation of the function / that is valid at least in a sector of the type { z G C | arg(^) < 
TT/4}, and the bigger a sector that we can allow the better. To treat the case where 
-.4'(0+) < oo we actually need a domain of approximation II that is asymptotic to a 
closed half-plane strictly contained in SJz > 0. 

There is an obvious candidate for a rational approximation. Recall that 

/(*) = cothz = l/zni + (z/%)2, 

where 

& = 7rfc - TT/2,        r\k = irk, 

and the convergence is uniform on compact subsets of the complex plane, not containing 
any of the poles ±ir)k of coth. However, we need convergence in an unbounded domain, 
and we need fairly explicit estimates on the error, so that we know what happens after 
we multiply the function by some appropriate weight functions. Observe that if we 
define a finite approximation fn by 

.  ..      1  "! + (»/&)' 

then the relative error is 

Actually, as we shall see in a moment, this is not the best possible approximation; to 
improve the convergence at infinity one needs one minor correction. 

Our estimates on the error are based on the following result: 
17 



LEMMA 4.1. For each positive integer N define 

,        ,,      "   1 + z[{it{k + c)) gN{z,c,d) = n 'v ) ' 

provided that neither N-l + cnorN-l + d + z/x is a negative integer.  Then 

.      JN_ r{N + c)f(z/x + N + d) 
3N(Z'C,) ~ WTWi^F+NTc) 

_ sin(z + -Kc)r(N + c)r(l - Z/TT - N - c) 
sm(z + wd)r(N + d)r(l-z/x-N-d)' 

where for the second equality we have the additional requirement that neither c + :/ü 

nor d + Z/TT is an integer. 
Proof. We start with the "well-known" (see, e.g., [7, p. 6]) elementary formula 

m) fr (k + ai)(k + a2) = r(l+61)r(l+62) 
t}i(k + h)(k + b2)    r(i + oi)r(i + a2) 

which is valid provided that 

oi + o2 = &i + b2 

and neither &i nor b2 is a negative integer. 
To get the first equality, rewrite gn{z, c, d) in the form 

~ (k + N - 1 + d)(k + N-1 +c+z/~) 
fc=i (k + N-l + c)(k + N-l + d + z/v) 

and use (27). For the second equality, use the reflection formula 

(28) r(z)r(l - z) = -A-       (z not an integer). 
sin7rz °   ' 

0 
We need some estimates on the function gs{z, c, d) in the Lemma 4.1 of the following 

type: 
LEMMA 4.2.  The following estimates are valid: 

(29) 

(30) 

^Ü = (, + c/2 + d/2-l/2rrfx 

(l + 0((z + c/2 + d/2-l/2)-2)), 

|arg(z + c)| < 7T- e,    e > 0, 

T(z + d) smn(z + c) 

(l + 0((-z-c/2-rf/2 + l/2)-2)), 

|arg(l -z-d)\ <7r-e,    e > 0. 
18 



Proof. For a proof for the first part, and for additional terms in the expansion, see 
[14, p. 34, formula (14)], and to get the second part, use the first part together with 
(28). 0 

Now let us apply this to the rod of constant unit density. In this case we get 

„ ... * .     T(N + i/2)2r(iz/x + N + i)r(-u/ff + N +1) 
n*)/jN(z)   r(JV + i^i^ + N + i/2)r(-iz/7r + N +1/2)" 

If we expand the functions above as z —> oo, z > 0, by using the asymptotic: for- 
mulae (29), we observe that for large values of z the ratio /(■*)//#(*) behaves like 
(1 + Z

2
/(TT(N + l/4)2)'^2. Thus, we get a much better approximation if, instead of us- 

ing the approximation that we originally proposed to use, we divide by this square root. 
Thus, the approximation that we end up with for C after this first stage is 

S(S)P$\S) 

S(s) (1 + ßy(Tt(N + 1/4))2)1/2 L\ 1 + Pl«k - V2))2 

which leads to a relative error 

TW(s) = 3L(!) = 
1 

f39) ' C(s)       {i + ß2/{n{N + i/4)ffi 

T{N + l/2)2r(i/?/7T + N + l)r(-i/?/7r + N + 1) 
T(N + iyr(iß/* + N + l/2)r(-iß/x+N + 1/2)' 

for the rod with density p = 1. The asymptotic estimates in Lemma 4.2 can now be 
used to estimate the relative error and we obtain 

THEOREM 4.3. Let A(t) be as in Section 3 and let rN' be the relative error for the 
rod with constant density p(x) = 1 defined in equation (32) above. 

1. For s in a compact subset K o/SJs > 0, 

(33) r#5(s) = 1 + 0(N~2) as N -> oo. 

2. If ß maps SRs > 0 into a region that is asymptotically contained in a sector 
\&vgz\ < | — e, e > 0, (recall thai this implies A(0+) = coj, then 

(34) IITI!' - 1||;/«, = 0(N~2) as N->oo. 

3. If -A'(0+) = oo, then 

(35) ||7#'- 1||/,-- 0 as W-» oo. 

//, in addition, .4(0+) < oo, then we have the more precise estimate 

(36) K,)-l||i/- = 0((»/?(iJV))-i) as N-too. 
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4- If-A'(0) <oo, then 

(37) limsupllTJ^IItf«. < oo and limsupUl/rJ^H//.» < oo. 
yV-*oo JV-+00 

In fact, ifW(s) is any weight function with \W(s)\ —> 0 as \s\ —> oo in 3?s > 0. 
then 

(38) \\W{r^ - 1)11//» -> 0 and ||W(1/T^ - 1)||„« - 0 «s A' - oo. 

In addition, 

(39) ^ -£V 

|u|-.oo 1 + O   v ' 

as N —» oo uiftere 

(40) C = exp (J4'(0+)M(0+)3/2). 

Proo/. We use Lemma 4.2 to estimate the right hand side of (32) as follows. 
First, formula (29) with c = 1/2 and d = 1 yields 

(4i)        T^TIJ
1
 
= {N+1/4)_1/211+0{N~2)\ M *" °°- 

Since the region II is symmetric with respect to the real axis, it suffices to consider 
the case where s is in the first quadrant Q = { s \ Sts > 0, Ös > 0 }. 

If s e Q, then ß(s) G Q and hence &(-i/?/ir+ Ar + 1) > Ar for s € Q. Thus by 
(29) with c = N + la.ndd=N + 1/2, 

where the O term holds uniformly for s G Q. 
It remains to estimate the difficult factor in (32), namely the ratio 

T(iß/* + N + l) 
T(iß/v +N + lfiY 

If s lies in a compact subset K of Q, or if the region II is asymptotically contained 
in a sector |argz| < | — e for some e > 0, we can again use (29) with c = A' + 1 mid 
d = N + 1/2 to obtain 

<«> y+
+A=m*+N+1/4)1/2 x t1+0{N'^as N - °°' 
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(45) 

■for all s e K, or for all Q in case the region II is asymptotically contained in |nrg--| < 
* - « In the latter case the constant in the O terra depends on how close e is to zero. 
Combining (41), (42) and (43), completes the proof of Parts 1 and 2 of Theorem 4.3. 

When A'(0+) = -oo, but the region II is not contained in any proper subsector nl 
the right half-plane, we again use (29) with c = A + M = A + 1/2 and t = */2 to see- 

that as A -> oo 

r^A + A + i) _(,^+WxlM?i/»x[1+o((ifl/T+jv + i/4)-^ 
1  j r(i/?/7r + iv + i/2)   VH/ l 

uniformly for those s for which R(i0(»)/* + JV+l) > 0- If, on the other hand »(!;?/» + 
A + 1) < 0, we use (30) with c = A + 1, d = A + 1/2 and e = */2 to obtain 

T{\ßh + N + \)      ,   .„.      Ar_1/4^!i"(i/? + (;V + 1/2)7r) 

x[i + o((-i/?A-^-i/4r2)] 

= (-i/3/,-A-l/4)^e^(i±g;) 

x[l + 0((-i^-iV-l/4)-2)] 

= (i/?/7r + A' + l/4)1/2^r3^jJ 

x[l + 0((Wjr+.V + l/4)"J)]'. 

is V - oo  Here the branch cut has been chosen to make {iß/v+N+W1 continuous 
for Sis > 0. Combining (44) and (45) with (41) and (42) we find that for * 6 Q, 

(46) $\s) = 1 + 0(A"2) + O ((i/J/ff + A? + 1/4)-2) as AT - oo 

when K(i/?/ff + A + 1) > 0, and 

(47) T(|)(ä) = i±£j (l + 0(JV"a) + O {{\ßl* + N + 1/4)-2)) as -V - ~ 

when R(i/tyir + A + 1) < 0. By Part 3 of Lemma 3.2, R0M - oo as 00(M - K 

when -A'(0+) = oo, and it follows from (46) and (47) that||rv -1||//- - 0 as A - x 

as asserted in (35). . . 
For the more precise estimate (36), note first that Part 1 above permits us to rest in- 

attention to a subset Q' = Q \ K, K compact, and use the asymptotic estimate- and 
inequalities (23) and (24) of Part 2 of Lemma 3.2. By Part 2, we may also assume thai 
*/4 < arg/?(s) < */2 for s £ Q'. Thus, for each s € Q', there exists w(«) e R with 

(48) Ö/J (iw(*)) = 0/3(6'),    «0 (iw(s)) < »/*(*)• 

Let ww denote any positive number with Q/J(i^v) = A'*. By (23) and (24) it is 
sufficient to prove (36) with »£(»#) on the right side replaced by S0(iw.v). 

21 



For those s in Q' with 3/3(s) > (Ar + 1)JT (i.e., where we use (47)), \vc get from (4S) 
and (23), (24), the uniform estimate 

(49) 

It follows that 

(50) 

(N- 

1 + e-2«s) 
1 - e-W 

= 1 + 0 (e-
23W"*->) 

as N -» oo, uniformly for s6Q' satisfying S(i/?(s)/jr + Ar + 1) < 0. 
Next, note that 

(51) |i/3(s)/7r + Af + 1/4| > max{»/?(s)/7r, |-3/?(s)/?r + A + 1/4|}. 

Also observe that by Part 2 of Lemma 3.2, 

(52) 9tß(iu>K) = o(A0       (AT -> oo). 

Thus, unless 

(53) |-3/?(s)/7r + AT + 1/4| > Xß(iu>N), 

we will have 1/2 < u(s)/wN < 2 by (23), and hence, by (24), 

(54) R/?(iwiv) 
<R/?(iw(«)) <K/?(s). 4 + o(l) 

Combining (51), (53) and (54) gives us 

(55) |i/?(*)/* + A' + 1/4I"1 = O ((»^(iwjv))-1) (Ar - oo) 

uniformly in Q\ and (36) follows from (46), (47), (50), (52) and (55). This completes 
the proof of Part 3 of Theorem 4.3. 

Finally, if -.4'(0+) < oo, then Part 3 of Lemma 3.2 gives Ö/3(iw) ~ u).4(0+)-'/2 and 
R/?(iw) -> -i.4'(0+)/.4(0+)3/2 > 0 as w -» oo. In particular, the curve i.3(iu,-)/7r (a.- > 
0) lies in the second quadrant but remains outside some strip {3b < -m, 0 < Q\: < 
-.4'(0+)/4^(0+)3/2}; by the argument principle, { iß{s)/-K \ s € Q) is disjoint from 
this strip as well. It follows that when N>m + l, 

and that 

|i/J(s)/7r + Ar+l/4|>M 

1 + e-2"M 

(seQ) 

-2ß(s) <M 

for those seQ with 3?(i/3(.s)/7r+Ar+l) < 0. By (46) and (47), we get the first, inequality 
in (37). For 1/T# , we apply the asymptotics of Lemma 4.2 to the reciprocal of (32): 
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this leads to analogues of (46) and (47) from which the bound on 1/TN in (37) can be 
•deduced as above. Combining (37) with (33) we see that (38) holds whenever IV is n 
weight with \W(s)\ -» 0 as s -» oo in Es > 0. The maximum oscillation estimate (39) 
is an immediate consequence of (47) and the fact that Xß(w) -» -|A'(0+).4(0+) '!/- 

as w -> oo. This completes the proof of Part 4 of Theorem 4.3.   D 
For the particular viscoelastic models A\ - At in Section 3, we have 
COROLLARY 4..4.   Let r^ be the relative error for the rod with constant density 

p(x) = 1 defined in equation (32). Then 
1. For the Kelvin-Voigt model A = Äi and for the fractional derivative model 

(56) ||^' - 1||,/- = 0(N-2) as N - oo. 

Here the constant in the O estimate depends on whether one has Ax or A-, and. 
in the latter case, on the order l-/iof the fractional derivative. 

2. For the intermediate model A = Az of order 1 - /.<, 

(57) ||^> - 1||„- = 0(N-«l-">) as N - oo. 

3. For the standard linear solid A = At, 

limsup|ri;'(iW)|=fi^(l + 0(Ar-2)), 

liminf|7i!>(iw)|=^§(l + 0(JV-*)) 

os N -. oo where C = exp [-S2e{E + 6e)~3'2). 
Proof. Parts (1) and (3) are immediate consequences of Theorem 4.3 and the 

discussion following Lemma 3.3. The size of the constant in the O term in (56) depends 
on the sector opening, that is, on the order 1 - /* of the fractional derivative. For Part 2. 
we use the fact that for A = -43, R/?(iw) ~ C^f»)1"" ~ C^)1"" as is noted in the 

discussion following Lemma 3.3.   D 
REMARK 4.5.    For the general case of constant density p{x) = p,  the tmnsfer 

function for our rod problem is 

p(s) = li^)coth(^(,)). 
p       s°- 

In this case the appropriate first-stage relative error T^ is defined as in equation (32) 
above, except that each occurrence of ß is replaced by (Jpß). An cxa.mina.hon of the 
proofs (the key difference is that the term (l+e-»»)(l-e-*») • infonnula (47) becomes 
(1 +c-2^)(i -e-V5'5)-1 ), shows that Theorem 4.3 and Corollary 4.4 remain true for 

the rod with p(x) = p with the constants C now given by 

(59)       C = exp (jpA'(0+)/A(0+f/2)  and C = exp (-Jp6t(E + Se)~3/2) > 
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respectively. 

In order to treat the rod with general densities (as well as the beam, sec [10]) we 
need to take account of the fact that the zeros and poles of the transfer function arc not 
spaced at exactly equal intervals. Recall that for the rod with general density p(.r), the 
transfer function P is given by ?{s) = ß(s)s-2f(ß(s)) where /, defined in Proposition 
3.1, has zeros ±i& and nonzero poles ±b]k satisfying 

(6°) & =      0n       +Hk,       Vk = — + uk       (ifc-xx>). zPi P\ 

Here px = /„ p(.r)'/2d.T, and the perturbation terms \.ik and vk satisfy the estimate 

(61) ftk = 0(l/k),        vk = 0{l/k)       (fc-»oo). 

We assume that the ft, and ?& are known to any degree of accuracy for 1 < k < N. and 
we define the first-stage approximation to P by 

^')(s)=7^ (i+(A^)VW-'V+1/4))2),/2 n ^2V    U1^MV   '^   ÜTTW^F' 
where,J>y Proposition 3.1, pD = /aV(a')di\ Then the first-stage approximate compen- 
sator C$ for the optimal compensator C(s) = f(s)/(S(s)P(s)) is given bv cV'(-v) = 
f(s)/(S(s)P%\s)), and the relative error is 

(62) ,#>(,) = *    ff    1 + (^)2 

(1 + {ptfm*{N + 1/4))*)1/2 ,=V+I 1 + (<?/*)2 • 

In order to estimate the relative error T^(S), we set 

(w; &• =—5- and?/fc = —,        (A;->oo, 

and write 

T#>(,)= i      ft     1+^/g)2 

(i + {PißVKAN + \imlß JL l + iß hi? 
(64) x   ft  lÄx   ft   1 + 0W 

=f(%)X ft !+(£/&)! x ft * + (/w *(} JL1+(/w x,n+ITrim?-- 
Here f#> is given by the expression on the right hand side of (32), but with each 
occurrence of ß replaced by {Plß). Theorem 4.3 and Remark 4.5 apply to flJ>. The 
following Lemma yields estimates for the remaining two products in equation (64). 
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LEMMA 4.6. Letil>k, ^. (fc = 1,2,...) satisfy 

'{65) &, V4 >0,    |V4-<*I<6<°° 

/or /2ze<2 posttwc constants 6 and c. Write 6k = |V-4 - fk\ and assume that 

(66) h = 0(l/fc)       (* - oo). 

Z)e/ine Qw(«) 6»/ 

r/ten as N -> oo the following uniform estimates hold: 

L \QN(z) - 1| = 0(Ejt>A'4/^"2) as JV -> oo uniformly in compact, subsets K 

2. |QjV(z) _ i| = 0 {Zk>K h/k) asN^oo uniformly in D, = { z | |wg z| < 0 < 

5. |QA,(Z) _ i| = O [Zt>K 6k/k + suP,>jV Sklog*) as JV -» oo uniformly w. D, = 
{ z | 3fo > 0} U { z = .r + ij/1 x < 0, |j/| > d > 0 }. 

^   |<3JV(*) - 1| = O (supfc>,v Äfcfc") as N -» oo uniformly in D* = { s | SR.: > 
0 }JU { z = .T + ij/1 .r < 0, \y\ > d/Of + 1) } «»«/» 0 < p < 1. 

We remark that for each part of Lemma 4.6, the conclusion is valid provided only 
that the {Sk} are such that the O term in the conclusion is finite; this is clearly the case 
when (66) holds. Part 4 of Lemma 4.6 is not used for our analysis of vi.scoehistu- rods 
since the region II is asvmptotic to a closed half-plane strictly contained in Uz > 0. \\ c 
include it here since its proof is a minor modification of that of Part 3, and we will use 
Part 4 to study the analogous problem for a viscoelastic Euler-Bernoulli beam [10] with 
6k = 0(e-fc) as k -► oo. This is needed due to the fact that for the case of a standard 
linear solid Euler-Bernoulli beam, the image of Sfts > 0 under the appropriate analogue 
of ß approaches the axis at infinity like a hyperbola. 

Proof.   Throughout the proof M denotes a positive constant whose value; may 

change from one line to the next. 
Write 

log CM«) =   £   log(l + tfc(*)). 
k=N+l 

where 

Since 

tk(z) _ 
l + zl^k _ i = ^ ~ ^     z 

_l+zM A        Z + H' 

\QN-l\< \Jo 

logOw 
esds < |logQ.v|exp|logQ.v| 
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(the integral is the path integral along the straight line joining 0 to logQN), it is clearly 
sufficient to show that the conclusions of Parts 2, 3 and 3 hold with their left side's 
replaced by 

TN(Z)= f; \tk(z)\. 

But in Di, \z(z + ft)-1] is uniformly bounded, so 

(68) TN{z)<M  ±   6J-       (zeDt), 

since ipk ~ ck, and Part 2 is proved. For z in a compact subset K of C, \z(z + •£[.)-' | = 
0(t_1) uniformly as k -» oo, and we obtain an extra factor of it in the denominator of 
the sum in (68). This proves Part 1. 

To prove Part 3, we can restrict attention to D'2 = Di\Dl (9 = 3w/4). For z = .r+iv; 
in D!2, it Ü < -a 12 or # > -3a:/2, then \z{z +'iP'k)-

f\ < M, and we can proceed as 
above. Let 

KN(z) = {k\k>N and - x/2 < ^. < -3,r/2 },        AN(z) =    sup   6k 
*eA-.v(=) 

(with AN(z) = 0 if KN{z) is empty). Then 

TjV(z)s    £   M*)|<M   £    pA-^ 
(09) *6A'W(.-) <:6A',v(--) I" + W 

<MAA,(j)   V    _i— 
wiMDll 

since \z/tl>k\ is uniformly bounded above and below on A'.v(j). 
To estimate the sum in (69), we use 

|2 + #|   >   max{|y|, |.r + ^.|} 

>   max{|?/|, |a: + cfc|-&}. 

For fixed z, if AA-(z) > 0, there is a j e A',v(*) such that 6j > \AN{~). In particular 
j > N and 

2     2v/2 
It follows that 

M*>    E    TT^ 

/ 
E    -+    E 1 

te*»(x)   M       teW=)   (l* + <*|-6)' 
\|x+c*:|<6+c |i+ct|>6+c 

2C 

<2<5j 



The index set for the first sum contains no more than 2(i/c + 3 terms, while the second 
sum is comparable to the sum of two finite harmonic series. We get 

W<MÄ.(2Vc + 3+log|, 

<M6Al + \ogj) < Msup{6k\ogk}; 
~       J k>N 

this proves Part 3. The proof of Part 4 is identical, except that (7Ü) becomes 

n,U)   <   M6j(\z\" + l+\og\z\) 

<   Msup{8kk"}. 
h>N 

This completes the proof of Lemma 4.6.  Ü 
Clearly, Part 4 can be generalized from D3 to other regions where \y\ > d/(l + |T|'') 

is replaced by \y\ > MM) with MM) ~» ° as M "* °°- 
Combining Lemma 4.6 with Theorem 4.3 and Remark 4.5 we obtain 
THEOREM 4.7. Let A(t) and p{x) be as in Section 3 and let Ty be the first-stage 

relative error defined in equation (62) for the rod with density p(x). Then Parts l-.{ to 
Theorem 4.3 remain valid provided that the following modifications arc made. 

1. In Part 2 the estimate (34) must be replaced by the weaker estimate 

(71) ||T{,
,,
-1||„-=0(N-

,
)«JV-.OO. 

2. In Part. 3 the precise estimate (36) that holds when .4(0+) < oo must be replaced 

by 

(72) WW - 1||„- = 0 (W(i.V)r2) + 0 (A-1 logN)  as X - oc.    . 

3. In Part 4 equation (39) must be replaced by 

limsup|ry>(iu,)| =i±£ (l + 0(N-' logN)) , 

(73) M-c>= ~ 
lira inf|7^>(iw)| =^£ (l + OCA'"1 logN)) 

where the constant C is now given by 

(74) C = exp(M'(0+)/.4(0+F), 

Proof. As noted earlier, f#> satisfies the conclusions of Theorem 4.3 with iurnmla 
(40) replaced by (74). The remaining two products in (64) may be rewritten as four 
products with linear Möbius factors each of which may be estimated by Lemma 4.G. 

Specifically, one of these products is 
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Since (61) holds and, by Lemma 3.2, Tli = { iß(s) \ SRs > 0} is always asymptotically 
contained in a region of the form D2, it follows from Part 3 of Lemma 4.6 that 

=0 f Y. fc-2 + sup klogk) = 0 (N-1 log Ar) as (A< -» oc). 
\h>N *>'V / v ; 

If n is asymptotically contained in a sector { z \ \z\ < 0 < TT/2 }, then Part 2 of Lemma 
4.6 yields \\ZN - 1]\„~, = 0(^-'), while Part 1 shows that ZA-(s) = 1 + 0{N~-) as 
Ar -> oo uniformly for s in a compact subsets is" of 3?s > 0. The other three products of 
linear Möbius factors which occur in (64) may be treated in exactly the same manner, 
and Theorem 4.7 follows.  D 

Of course, the general density version of Corollary 4.4 for the particular visc-oclastir: 
models .4] - A^ also holds after making the same modifications as in Theorem 4.7. 

For each of the models, Figure 2 shows ^(iui) - 1| (ordinate), as denned in (32). 
plotted against u for N increasing from Ar = 5 to N = 55 in increments of 10. The 
curves move clown and to the right as Ar increases. 
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FIG. 2. Plots of \T%'(iui) - l\ 
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5. Approximation of Möbius Transforms in ß2 by Möbius Transforms in 
s. After the first approximation step, we arrive at a finite product of factors (Möbius 
transformations in ß2) of the type 

Substituting the definition of 0 into these factors we get 

Mk(s) = £M±Ä 

How do we approximate these factors by rational functions of s? 
Let us take a closer look at one of these factors, where for simplicity we denote &. 

by £ and rjk by ??, i.e., we write it in the form 

(75) M(s)=S/e + Ä{S). 
'     sjrf + A(s) 

As s -+ oo this factor tends to if If, which is close to 1 (since ifi/tf tends to 1 as 
/o -> oo), and as s -> 0 it tends to 1 (since Ä(s) ~ £/s as * -» 0). The largest 
deviation from l_on the imaginary axis occurs in the cross-over region where the order 
of magnitude of A is the same as the order of magnitude of s/f2 and s/if. This indicates 
that a rational approximation of M(s) should have its zeros and poles somewhere in 
the left half-plane close to the cross-over region. As we shall see below, this is true, at 
least if we restrict our attention to the ease where the internal damping is weak enough. 

In Section 4 the amount of internal clamping, described by the parameter e in 
our examples Ax-A.\, was significant only in that it affects the size of the O constants 
in our estimates, and hence the number of terms A' needed to get a good first-stage 
approximation. It did not determine the shape of the image of the half-plane St.« > 0 
under the map ß, and consequently did not affect the order of our convergence estimates. 
In this Section we shall make use of the fact that in many materials of interest, the 
damping parameter e is quite small compared to the elastic parameter E. 

More precisely, we assume that A is of the form 

(76) A(s) = E/s + ea(s), 

where a has been scaled so that, for example, 

5(0) = 1. 

Then (75) can be written in the form 

(77) M[3) = >/? + E/s + «i(s) 
[    ' *{S)     s/if + E/s + (?,.(Sy 

For e = 0 (no damping) this function has two purely imaginary zeros located at ±\\/E£. 
and two purely imaginary poles located at ±i \jEr\. By continuity, for small nonzero 
values of £, M will have zeros and poles close to these. 
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As the following lemma shows, these are the only complex zeros and poles of the 

function M: - 
LEMMA 5.1.   For each constant C > 0, the function s/(- + A(s) has at most ova 

pair of complex conjugate zeros. 
For a proof, see Deseh and Grimmer [6]. 
For each C and e such that s/C- + E/s + (a{s) has a pair of complex conjugate roots, 

denote the root of this function in the upper half-plane by *{l£. Then the appropriate 

first order approximation of M(s) is 

_ [l-s/su)Q-*/%*)    • 
-'MS]-(l-s/%t)(l-s/S„,£)' 

(We have normalized A' so that. A'(0) = M(0) = 1.) Let Nk(s) be the same function 
with f replaced by & and ,, replaced by %.. Then the total relative error that wc 

introduce at this stage is 

r<2> 
CN (s)     fc=i 

are still in- Thc analvtic estimates that we are able to prove for the size of r:V 

complete We have been able to show that, under quite general assumptions, the 

H--norm of each factor Mk(s)/Nk(s) - 1 is of order 0(e) as 6 - 0. However, the 
0(e)-constant that we are able to obtain deteriorates as one multiplies A' successive 
factors and lets N - oo. This leaves open the question of whether it is m iact. true 
that IITJ?' - 1||„~ = 0(e) as e -* 0, uniformly in N. Observe that, for the Kelvhi-\ oigt 
model M each factor Mk(s) can be expressed as the ratio of quadratics m ». so the 
result is exact; i.e., there is no error introduced at this stage. We are also able to show 
that if alt) is a finite sum of exponentially decaying terms (the natural generalization 
of the standard linear solid model .4,,) so that A(s) is a rational function (.„ winch ens.- 
the approximation of the factors Mk(s) by Nk(s) serves only to lower the order ol the 

approximate compensator), then it is indeed true that ||TA7 - 1||H~ - 0{e) as e. - 0 
uniformly in N. For the models A2 and A3 we arc forced to simply compute t.l- • 

numerically. . , 
In Figure 3, |r^2)(i^) - 1| (ordiuate) is plotted against u for each of the models 

4, A3 and 4, In each case, N increases from 5 to 55 in increments of 10 from the 
bottom graph to the top one. Similar plots, not shown here, were made for a more- 
refined procedure where a real third root of the numerator and of the denominator 

iic error 

orijsin as of each Mk{s) (these approach the negative real zero of A(s) closest to the 
7c -> oo) was included in the approximation of Mk{s) to account partially for the creep 
response For the parameters used here improvement by up to a factor of 2 m the 
relative error T|

2)
 was observed in the irrational cases (and there is then no error at this 

stage for model Ai). 
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6. The Final Approximation. When we combine the different expansions do- 
scribed in the previous sections we get a rational approximation, except for the fact 
that there is a left-over irrational factor in the denominator of (31) that has not been 

accounted for, namely the factor 

(78) (l + 0V(*(JV + l/4))s),/2. 

Here we look at low order approximations of (78). In particular, we investigate the size 
of the error that one gets by ignoring this factor completely; note that it tends to 1 

uniformly on compact subsets of the right half-plane as N -» oo. 
The relative errors T<!> (N = 1,2,...), together with their reciprocals, arc uniformly 

bounded in H°° (Theorems 4.3 and 4.7), and the same is true of the errors TN of Sect - 
5 at least in the special ease where A[s) = E/s + ea(s) is rational and «is small relat 
to E This type of boundedness will no longer hold for the new error introduced wl 
the square root, in (78) is approximated by a rational function, because in general Uns 
root will not have a rational growth rate at infinity. Thus, in the final approximation, 
in most cases the magnitude of rN must be either unbounded, or not bounded away 
from zero. However, as we saw in Section 2, the only thing that we really have to worry 
about is that we satisfy the requirement that limsup^JhvCSI],,« < oc. More 

precisely since r#> has been uniformly bounded in the preceding sections, if we denote 
the approximation that we will use for the root in (78) by hK, then we need only have 
hK converging to one uniformly on compact subsets of the right, halt-plane, and, in 

addition, 

(79) limsup|T?)aS||//.<oo, 

ion 
ive 
H'lt 

where 

J-V 
_ e„(s) = (l + /3(.sf/WV + l/4))2N'/2 

"•!:>( «1 ~~ M«) 

\t this stage the size of the function C at infinity becomes important. There are iwo 
possibilities: either C(oo) = 0 or limsupA,_j5(S)l > 0. (In the former case the ideal 
compensator is strictly proper, in the latter it is not.) 

The second of these possibilities can occur in only one way. Recall thai C (*) ~ 
f{s)/P{s)S{s) ~ f{s)/P(s) as s -* oo. The function T must have a zero ol mlegor 
order at infinity, since we require it to be rational. Concerning />(«). w have the 

following estimates from the results of Section 3. 
LEMMA 6.1. Let A{t) be as in Section 3. 

1. P(s)is analytic in the closed right half-plane, except for a double pole at 0. awl 

\s2H*)\ 
1 + \ß(s)\ 

is bounded and bounded away from 0 in Xs > 0. Moreover, 
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2. ifA(0+) < oo, then \sP(s)\ is bounded and bounded away from 0 as s — oo in 
Ks > 0, and 

3. if.A{Q+) = oo, then \P{s)\ = ofl«|->) and \P~\s)\ = O (\s^) as s - oo in 

Proof. By Lemma 4.6, we need only look at (17), the case .of uniform density. Then 
Part 1 follows from Lemma 3.2, Parts (lb) and 3 (with the argument principle). Parts 
2 and 3 are clearjrom Lemma 3.2, Parts (lg)and (lh).   D 

Thus, since C(s) must be bounded for large s (see (4)), the only case where C(oo) = 
0 fails to hold is the one where .4(0+) < oo and f has a first order zero at infinity. In 
all other cases T must have at least a second order zero at infinity, and C(oo) = 0. 

Let us first discuss the case that in view of the discussion above is more common, 
namely the one where C(oo) = 0, and f has at least a second order zero at infinity.' 
We claim that in this case we may take hN = 1, i.e., we may ignore the square root 
completely. This follows from the following lemma: 

LEMMA C.2. Iff(s) = 0(S-
2) as s -> oo, then (70) holds with /i,Y = 1. 

Proof. By Part 1 of Lemma 6.1, it suffices to show that 

hmsup sup i :■,,„, M < oo. 
A'-oo   fc>0 1 + \ß{s)\ 

But this is trivially true since the numerator can be estimated from above by 1 + 
\ß(s)\/(7r(N + 1/4)) < 1 + \ß(s)\. D 

Note that if we use hK = 1, then the approximate compensators C.Y = r.v"-'v)rl
v"C 

will not be strictly proper when f has a second order zero at infinity. If one wants » 
strictly proper compensator, then one may instead use hK(s) = (1 + exs), where? f v -> 0 
as N -* oo; this sequence can be chosen more or less arbitrarily. This does not disturb 
(79). 

Now let us return to the case where C(oo) ^ 0. Clearly, in this case we cannot 
take hN = 1, since the square root in (78) grows like s as s -» oo, invalidating (79). 
However, the following modification is sufficient. 

LEMMA 6.3. IfT(s) has a first order zero at infinity (and hence C(oc) ^ 0;. then 
(79) holds with hN = 1 + eNs, where, e.g., eN = l/(wN+l/4), or more generally. <r,v 

represents any sequence satisfying e.v -> 0 and e^ = O(N) as N -» oo. 
Proof. In this case C(oo)S(oo) / 0, and we must show that 

Inn sup sup J    'v  v '—LL 
N-*co   &>0 |l + «,vs' 

2(1/2 

< CO. 

This is true, because |1 + eNs\ > (1 + eN\s\)/^, and, for some constant A' >  1 
\ß(s)\ < K\s\ and eN > l/(KN), and hence 

|1 + 0*/(*{N + 1/4))2|1/2 ^ 1 + K\s\/{nN + 1/4) 

|1+«H -    y/2(l+ \s\/(KN))   ' 

the supremum of which over s stays bounded as N -» oo. G 
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FIG. 4. Plots of \T%'(iu>) - 1\ 

Note that, in contrast, to the error ^'introduced iu Section 5, r^'(s) approaches 
one as N - oo; there is no residual error. Nonetheless, at least in our examples, the 

error TJ?
1
 will be the dominating error for high frequencies. 

We plot |T^(iu;) - 1| (for A' between 5 and 55, increasing to the right) versus ^ ,n 

F
'
S

"TO produce some pictures of the final result we have fixed the "ideal" sensitivity 

function S by choosing 

b(s + t) « / Via T c i 

) 

where 6 = 5 and e = 0.01. Then f = 1 - S has a second order zero at infinity. Her /, 
determines the cross-over frequency, and e restricts the size of PS at zero and the sr/e 
of CS at infinity; cf. (4). A plot of \S\ and \T\ is given in Figure 5, as well as plots # | 
for different choices of kernels. Plots of \PS\ and |C5|, which pertam to the s nb.h.y 
requirement (4), are given in Figure 6. The sizes of \SCrN\ (see (13)) are plotted m 
Figure 7, and the error \rN - 1| weighted by \T\ is plotted in Figure 8. Here rA- .s tue 

35 



FIG. 5. Plots of \S\, \f\ (left, S(oo) = 1) and \C\ 

'T 

FIG. 6. Plots of\CS\ (left) and \PS\ 

total relative error rN = T^T^T™. (AS above, the u axis is horizontal.) 
These plots summarize the combined effect of all the approximations. Concern in»- 

Figure (, note that the weighting by CS controls the unboundedness of r,v at hi-h 
frequencies (due to r',') to the extent that the validity of (13) is determined at the fi,"st 
peak of the graph (« ~ 1.5). In Figure 8, observe that for A2, A3 and .4.,. the curves 
rise to a limit in the lower frequencies as N increases; this residual error reflects the 
neglected creep response in the approximation of Section 5. For .4,, the Möbius factors 
of Section 5 can be expressed as quotients of second degree polynomials in .* so no 
approximation is necessary and we see no "folding over" in the figure. For 4., we "et 
cubic polynomials; by omitting the approximation step of Section 5 we end up with a 
graph (not shown) similar to the one for .4j above at low frequencies. 
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